درباره وبلاگ به وبلاگ من خوش آمدید موضوعات
آخرین مطالب آرشيو وبلاگ پيوندها
نويسندگان جالب
آشنايي با انرژي هستهاي و استفادههاي صلح جويانه از آن در صنعت و اقتصاد
1- مقدمه انرژي هسته اي از عمده ترين مباحث علوم و تکنولوژي هسته اي است و هم اکنون نقش عمده اي را در تأمين انرژي کشورهاي مختلف خصوصا کشورهاي پيشرفته دارد. اهميت انرژي و منابع مختلف تهيه آن، در حال حاضر جزء رويکردهاي اصلي دولتها قرار دارد. به عبارت بهتر، بررسي، اصلاح و استفاده بهينه از منابع موجود انرژي، از مسائل مهم هر کشور در جهت توسعه اقتصادي و اجتماعي است. امروزه بحرانهاي سياسي و اقتصادي و مسائلي نظير محدوديت ذخاير فسيلي، نگرانيهاي زيست محيطي، ازدياد جمعيت، همگي مباحث جهان شمولي هستند که با گستردگي تمام فکر انديشمندان را در يافتن راه کارهاي مناسب براي حل معظلات انرژي در جهان به خود مشغول داشته اند. در حال حاضر اغلب کشورهاي جهان به نقش و اهميت منابع مختلف انرژي در تأمين نيازهاي حال و آينده پي برده و سرمايه گذاري ها و تحقيقات وسيعي را در جهت سياست گذاري، استراتژي و برنامه هاي زيربنايي و اصولي انجام مي دهند. در ميان حاملهاي مختلف انرژي، انرژي هسته اي جايگاه ويژه اي دارد. هم اکنون بيش از 430 نيروگاه هسته اي در جهان فعال مي باشند و انرژي برخي کشورها مانند فرانسه عمدتا از برق هستهاي تأمين مي شود. جمهوري اسلامي ايران بيش از سه دهه است که تحقيقات متنوعي را در زمينه هاي مختلف علوم و تکنولوژي هسته اي انجام داده و براساس استراتژي خود، مصمم به ايجاد نيروگاههاي هسته اي به ظرفيت کل 6000 مگاوات تا سال 1400 هجري شمسي مي باشد. در اين زمينه، جمهوري اسلامي ايران در نشست گذشته آژانس بين المللي انرژي اتمي، تمايل خود را نسبت به همکاري تمامي کشورهاي جهان جهت ايجاد اين نيروگاهها و تهيه سوخت مربوطه رسما" اعلام نموده است.
2- سوخت هسته اي استفاده از سوخت هستهاي براي توليد انرژي، با به کارگيري اولين راکتورهاي قدرت در دهه 60 ميلادي شروع شد و توليد و مصرف آن به طور پيوسته رو به افزايش بوده است. پايه صنعت انرژي هستهاي مبتني بر استفاده از انرژي دروني اورانيوم ميباشد. بر حسب نوع راکتور نيروگاه اتمي، قسمت اصلي اين انرژي و يا بخش کوچکي از آن مورد استفاده قرار ميگيرد. يکي از تفاوت هاي اساسي سوخت هستهاي با سوخت فسيلي، پديده شکافت هستهاي در سوخت است. با توليد انرژي به وسيله شکافت، ساختار سوخت به صورت آرام ولي پيوسته تغيير کرده و پاره هاي شکافت راديو اکتيو را به وجود ميآورد. از اين حهت رعايت مسايل ايمني و پيش بيني جداره هاي بازدارنده متوالي در راکتور براي جلوگيري از پخش مواد راديواکتيو ضروري است. يکي ديگر از ويژگي هاي سوخت هستهاي، امکان استفاده از آن در يک مدار بسته يا چرخه سوخت است. با بازفرايابي سوخت مصرف شده که در حال حاضر در کشورهاي صنعتي انجام ميگردد، اورانيوم مصرف نشده و پلوتونيوم توليد شده در راکتور براي مصرف دوباره، برگشت داده ميشود. در راکتورهاي هستهاي از شکافت هستهاي براي توليد انرژي گرمايي استفاده ميشود. اين انرژي حرارتي به وسيله توربين به انرژي مکانيکي و توسط ژنراتور به انرژي الکتريکي تبديل ميشود. بنابراين، راکتورهاي هستهاي همان نقشي را در نيروگاه هستهاي ايفاد ميکنند که ديگهاي بخار در نيروگاه هاي حرارتي با سوخت فسيلي به عهده دارند. تفاوت نيروگاههاي هستهاي با حرارتي در نوع سوخت مصرفي آنهاست که در اولي از سوفت هستهاي و در دومي از مواد نفتي، گاز يا زغال سنگ استفاده ميشود. ماده اصلي که براي سوخت راکتورها به کارميرود، اورانيوم يا ترکيباتي از اين فلز است که به علت خاصيتي که در جذب نوترون و شکافت هستهاي دارد، مورد استفاده قرار ميگيرد. اورانيوم يک ماده راديواکتيو است که در طبيعت يافت ميشود. پلوتونيوم فلز ديگري است که براي سوخت در راکتورهاي قدرت به کار ميرود ولي اين فلزکه آن هم راديواکتيو است، در طبيعت يافت نميشود و از واکنش هاي هستهاي اورانيوم به وجود ميآيد.
3- انرژي هسته اي انرژي به دست آمده از فعل و انفعالات هسته اي را انرژي هسته اي مي گويند. اين انرژي از دو منشا مي تواند سرچشمه بگيرد. يکي شکافت هسته اتمهاي سنگين و ديگر همجوشي يا گداخت هسته اتمهاي سبک، که به اختصار به اين دو فعل و انفعال هسته اي که به توليد انرژي هسته اي منجر مي گردند پرداخته مي شود.
3-1 شکافت هسته اي پس از کشف نوترون توسط"چاوديک" در سال 1932، هان و استراسمن، دانشمندان آلماني، در سال 1939 طي مقاله اي نشان دادند که اين ذره مي تواند عناصر سنگيني از قبيل اورانيوم را شکافته و آنها را به عناصر ديگر با جرم کمتر تبديل نمايد. شکافت اورانيوم که علاوه بر آزادسازي انرژي يا گسيل چند نوترون نيز همراه مي شود، منشا تحولات بسياري در قرن اخير شده است. در طي تحقيقاتي که قبل از جنگ جهاني دوم به ويژه در فرانسه و آلمان انجام گرفت، محقق گشت که نوترونهاي آزاد شده مي توانند تحت شرايط مناسب براي ايجاد شکافت در ديگر هسته هاي اورانيوم مورد استفاده قرار گيرند و بدين ترتيب يک واکنش زنجيره اي را مي توان آغاز نمود که باعث آزادسازي مقدار قابل ملاحظه اي انرژي گردد. اين شکافت بيشتر مربوط به 235-U (اورانيوم با جرم اتمي 235) بود و وجود يک حداقل جرمي از اورانيوم براي يک واکنش زنجيره اي لازم به نظر مي رسيد. اين حداقل را جرم بحراني ناميدند. در طول جنگ جهاني دوم، اين تحقيقات در کشورهاي انگلستان، کانادا و عمدتا آمريکا ادامه يافت و نتيجتا به ساخت اولين راکتور اتمي در زيرزمين دانشگاه شيکاگو توسط فرمي و چندي بعد به توليد اولين بمب اتمي منجر گرديد که بطور موفقيت آميزي فجايع اسف بار هيروشيما و ناکازاکي را بوجود آورد. راکتور اتمي نمونه بارز استفاده صلح آميز از انرژي اتمي بود در حاليکه بمب اتمي به وضوح استفاده غيرصلح آميز آن را آشکار مي ساخت. به هرحال هر دوي اين فرآيندها به توليد انرژي هسته اي که ناشي از شکافت هسته اتمهاي سنگين بود منجر گشتند، البته يکي کنترل شده (راکتور اتمي) و ديگري کنترل نشده (بمب اتمي) به حساب مي آمد.
fission + 2 or 3 n + 200 MW MeV U235 + n
3-2 همجوشي يا گداخت هسته اي همجوشي يا گداخت هسته اي را مي توان به عنوان فرآيند عکس شکافت هسته اي قلمداد کرد، يعني فرآيندي که در آن دست کم يکي از محصولات واکنش هسته اي ازهر يک از مواد واکنش زاي اوليه پر جرمتر باشد. گداخت هسته اي در مواردي که جرم کل هسته هاي محصول از جرم کل مواد واکنش زا کمتر باشد منجر به رهايي انرژي خواهد شد. فعل و انفعالاتي که در ستاره ها رخ مي دهد و منجر به توليد انرژي بسيار زيادي مي گردد، شناخته شده ترين و بارزترين نمونه هاي همجوشي يا گداخت هسته اي است. گداخت هسته اي را سرچشمه انرژي فردا مي دانند. از محسنات راکتورهاي گداخت، درجه بالاي ايمني آنهاست و برخلاف راکتورهاي شکافت هسته اي که پسمانهاي راديو اکتيو بسياري توليد مي کنند، پسمان راکتورهاي گداخت مقدار کمي هليوم غير راديواکتيو است.
4- نيروگاه اتمي برق از مهمترين منابع استفاده صلح آميز از انرژي اتمي، ساخت راکتورهاي هسته اي جهت توليد برق مي باشد. امروزه نيروگاه هاي قدرت بيشتر براي توليد نيروي برق به کار ميروند و همانند نيروگاه هاي بخاري، در نيروگاه اتمي نيز بخار براي راه اندازي توربين مصرف ميشود و انرژي چرخشي آن در يک ژنراتور به انرژي الکتريکي تبديل ميگردد. برخلاف يک نيروگاه معمولي فسيلي، در نيروگاه هستهاي انرژي حرارتي براي توليد بخار توسط سوختن شيميايي موادي مانند ذغال سنگ، نفت و گاز ايجاد نشده، بلکه توسط شکافته شدن هستههاي عناصر سنگين مانند اورانيوم، حاصل و توسط سيال خنک کننده برداشت ميشود. بنابراين تفاوت اصلي نيروگاه اتمي با نبروگاههاي حرارتي عادي در روش توليد انرژي حرارتي آن ميباشد. در نيروگاههاي حرارتي از سوخت هاي فسيلي همچون نفت، گاز يا ذغال سنگ استفاده ميشود ولي در نيروگاه اتمي حرارت به وسيله واکنشهاي زنجيرهاي کنترل شده ايجاد ميگردد و طي آنها هستههاي لازم براي توليد جريان الکتريکي شکافته ميشوند. راکتور يک ساختار فلزي است در آن سوخت هستهاي، ماده کند کننده نوترونها و ماده خنک کننده در کنار يکديگر قرار گرفته اند. محدوده سوخت هسته اي يک راکتور را که در آنجا واکنش هستهاي رخ داده وانرژي گرمايي توليد ميشود، قلب راکتور ميگويند. انرژي گرمايي توليد شده در راکتور توسط ماده خنک کننده ( آب، آب سنگين، گاز و ...) به يک مبدل گرمايي منتقل و در آنجا توسط بخار آب به توربين منتقل ميشود. بخار آب بخشي از انرژي گرمايي خود را به پرههاي توربين منتقل کرده و محور توربين را به گردش در ميآورد. راکتور هستهاي و مبدل گرمايي را يک ساختار بتني به نام پوشش ايمني احاطه ميکند تا در صورت بروز حادثه، از پخش مواد راديواکتيو به محيط اطراف جلوگيري شود. راکتورهسته اي وسيله اي است که در آن فرآيند شکافت هسته اي بصورت کنترل شده انجام مي گيرد. در طي اين فرآيند انرژي زيادي آزاد مي گردد. به نحوي که مثلا در اثر شکافت نيم کيلوگرم اورانيوم انرژي معادل بيش از 1500 تن زغال سنگ به دست مي آيد. هم اکنون در سراسر جهان، راکتورهاي متعددي در حال کار وجود دارند که بسياري از آنها براي توليد قدرت و به منظور تبديل آن به انرژي الکتريکي، پاره اي براي راندن کشتيها و زيردريائيها، برخي براي توليد راديو ايزوتوپوپها و تحقيقات علمي و گونه هايي نيز براي مقاصد آزمايشي و آموزشي مورد استفاده قرار مي گيرند. در راکتورهاي هسته اي که براي نيروگاههاي اتمي طراحي شده اند (راکتورهاي قدرت)، اتمهاي اورانيوم و پلوتونيم توسط نوترونها شکافته مي شوند و انرژي آزاد شده گرماي لازم را براي توليد بخار ايجاد کرده و بخار حاصله براي چرخاندن توربينهاي مولد برق به کار گرفته مي شوند.
به لحاظ تاريخي اولين راکتور اتمي در آمريکا بوسيله شرکت "وستينگهاوس" و به منظور استفاده در زير دريائيها ساخته شد. ساخت اين راکتور پايه اصلي و استخوان بندي تکنولوژي فعلي نيروگاههاي اتميPWR را تشکيل داد. سپس شرکت جنرال الکتريک موفق به ساخت راکتورهايي از نوع BWR گرديد. اما اولين راکتوري که اختصاصا جهت توليد برق طراحي شده، در ژوئن 1954در شهر"آبنينسک" در نزديکي مسکو درکشور شوروي سابق احداث گرديد که بيشتر جنبه نمايشي داشت، توليد الکتريسيته از راکتورهاي اتمي در مقياس صنعتي در سال 1956 در انگلستان آغاز گرديد. تا سال 1965 روند ساخت نيروگاههاي اتمي از رشد محدودي برخوردار بود اما طي دو دهه 1966 تا 1985 جهش زيادي در ساخت نيروگاههاي اتمي به وجود آمده است. اين جهش طي سالهاي 1972 تا 1976 که به طور متوسط هر سال 30 نيروگاه شروع به ساخت مي کردند بسيار زياد و قابل توجه است. يک دليل آن شوک نفتي اوايل دهه 1970 مي باشد که کشورهاي مختلف را برآن داشت تا جهت تأمين انرژي مورد نياز خود بطور زايد الوصفي به انرژي هسته اي روي آورند. پس از دوره جهش فوق يعني از سال 1986 تاکنون روند ساخت نيروگاهها به شدت کاهش يافته است. به طوريکه در حال حاضر به طور متوسط ساليانه ساخت 4 راکتور اتمي شروع مي شود. کشورهاي مختلف در توليد برق هسته اي روند گوناگوني داشته اند. به عنوان مثال کشور انگلستان که تا سال 1965 پيشرو در ساخت نيروگاه اتمي بود، پس از آن تاريخ، ساخت نيروگاه اتمي در اين کشور کاهش يافت. اما برعکس در آمريکا به اوج خود رسيد. کشور آمريکا که تا اواخر دهه 1960 تنها 17 نيروگاه اتمي داشت در طول دهه هاي 1970و 1980 بيش از 90 نيروگاه اتمي ديگر ساخت. اين مسئله نشان دهنده افزايش شديد تقاضاي انرژي در آمريکاست. هزينه توليد برق هسته اي در مقايسه با توليد برق از منابع ديگر انرژي در امريکا کاملا قابل رقابت مي باشد. هم اکنون فرانسه با داشتن سهم 75 درصدي برق هسته اي از کل توليد برق خود درصدر کشورهاي جهان قرار دارد. پس از آن به ترتيب ليتواني(73درصد)، بلژيک(57درصد)، بلغارستان و اسلواکي(47درصد) و سوئد (8/46درصد) مي باشند. آمريکا نيز حدود 20 درصد از توليد برق خود را به برق هسته اي اختصاص داده است. گرچه ساخت نيروگاههاي هسته اي و توليد برق هسته اي در جهان از رشد انفجاري اواخر دهه 1960 تا اواسط 1980 برخوردار نيست اما کشورهاي مختلف همچنان درصدد تأمين انرژي مورد نياز خود از طريق انرژي هسته اي مي باشند. طبق پيش بيني هاي به عمل آمده روند استفاده از برق هسته اي تا دهه هاي آينده همچنان روند صعودي خواهد داشت. در اين زمينه، منطقه آسيا و اروپاي شرقي به ترتيب مناطق اصلي جهان در ساخت نيروگاه هسته اي خواهند بود. در اين راستا، ژاپن با ساخت نيروگاههاي اتمي با ظرفيت بيش از 25000 مگا وات درصدر کشورها قرار دارد. پس از آن چين، کره جنوبي، قزاقستان، روماني، هند و روسيه جاي دارند. استفاده از انرژي هسته اي در کشورهاي کانادا، آرژانتين، فرانسه، آلمان، آفريقاي جنوبي، سوئيس و آمريکا تقريبا روند ثابتي را طي دو دهه آينده طي خواهد کرد.
4-1- نيروگاه اتمي بوشهر بهره گيري از انرژي هستهاي براي توليد انرژي الکتريکي در کشور ما، صنعتي نوين به حساب ميآيد. نخستين تلاشها در اين زمينه به اوايل دهه 1350 خورشيدي بازميگردد که قرار بود به کمک متخصصان آلماني نخستين نيروگاههاي اتمي برق در سواحل خليج فارس، راه اندازي شوند. در تاريخ آذر 1353 (November 1974) قرارداد اوليه طراحي و ساخت دو واحد نيروگاه بين سازمان انرژي اتمي ايران و شرکت کرافت ورک اونيون (KWU) آلمان منعقد گرديد، محل ساخت آن در تاريخ ارديبهشت 1354 (May 1975) در 18 کيلومتري جنوب بندر بوشهر بين دو روستاي هليله و بندرگاه انتخاب گرديد، در تاريخ تير 1355 (July 1975) کار ساختماني آن آغاز شد و در تاريخ 14 تير 1355 (4.7.1976) قرارداد في مابين به امضاي نهايي رسيد.
با پيروزي انقلاب اسلامي عمليات ساخت اين نيروگاه متوقف و در طول جنگ تحميلي تاسيسات موجود چندين بار مورد حمله هوايي واقع گرديد. در مرداد 1377 بار ديگر اين قرارداد مورد بازبيني کلي قرار گرفت و ساخت نيروگاه به صورت کليد در دست به شرکت اتم استروي اکسپورت روسي محول گرديد. راکتور اين نيروگاه از نوع آب سبک تحت فشار با قدرت توليد انرژي الکتريکي 1000مگاوات ميباشد. براي سوخت اين راکتور از اورانيوم 235 (به صورت اکسيد اورانيوم) استفاده ميشود که تا حدود 3 درصد غني شده است. برق توليد شده در اين نيروگاه به وسيله خطوط انتقال 400 کيلوولتي به شبکه سراسري منتقل خواهد شد و همچنين برق مورد نياز در زمان ساخت نيروگاه از طريق خطوط 230 کيلوولتي انتقال نيرو که پست نيروگاه را به پست 230 کيلوولتي بوشهر متصل مينمايد، تامين ميگردد. کليه ساختمانها و تجهيزات نيروگاه در زميني به مساحت تقريبي 200 هکتار قرار گرفته است.
5- ديدگاههاي اقتصادي و زيست محيطي برق هسته اي جمهوري اسلامي ايران در فرآيند توسعه پايدار خود، به تکنولوژي هسته اي چه از لحاظ تأمين نيرو و ايجاد جايگزيني مناسب در عرصه انرژي و چه از نظر ديگر بهره برداريهاي صلح آميز از آن در زمينه هاي صنعت، کشاورزي، پزشکي و خدمات، نياز مبرم دارد و تحقق اين رسالت مهم به عهده سازمان انرژي اتمي ايران مي باشد. بديهي است در زمينه کاربرد انرژي هسته اي به منظور تأمين قسمتي از برق مورد نياز کشور فاکتورهاي بسيار مهمي از جمله مسايل اقتصادي و زيست محيطي مطرح مي گردند.
5-1- ديدگاه اقتصادي استفاده از برق هسته اي امروزه کشورهاي بسياري به ويژه کشورهاي اروپايي سهم قابل توجهي از برق مورد نياز خود را از انرژي هسته اي تأمين مي نمايند. به طوريکه آمار نشان مي دهد از مجموع نيروگاههاي هسته اي نصب شده جهت تأمين برق در جهان به ترتيب 35 درصد به اروپاي غربي، 33 درصد به آمريکاي شمالي، 5/16 درصد به خاور دور، 13 درصد به اروپاي شرقي و نهايتا فقط 74/0 درصد به آسياي ميانه اختصاص دارد. بدون شک در توجيه ضرورت ايجاد تنوع در سيستم عرضه انرژي کشورهاي مذکور، انرژي هسته اي به عنوان يک گزينه مطمئن اقتصادي مطرح است. بنابراين ابعاد اقتصادي جايگزيني نيروگاههاي هسته اي با توجه به تحليل هزينه توليد (قيمت تمام شده) برق در سيستمهاي مختلف نيرو قابل تأمل و بررسي است. از اين رو در اغلب کشورها، نيروگاههاي هسته اي با عملکرد مناسب اقتصادي خود از هر لحاظ با نيروگاههاي سوخت فسيلي قابل رقابت مي باشند. طي چند دهه گذشته کاهش قيمت سوختهاي فسيلي در بازارهاي جهاني، سبب افزايش هزينه هاي ساخت نيروگاههاي هسته اي به دليل تشديد مقررات و ضوابط ايمني، طولاني تر شدن مدت ساخت و بالاخره باعث ايجاد مشکلات تأمين مالي لازم و بالا رفتن قيمت تمام شده هر واحد الکتريسيته در اين نيروگاهها شده است. از يک طرف مشاهده مي شود که طي اين مدت حدود 40 درصد از هزينه هاي چرخه سوخت هسته اي کاهش يافته است و از سويي ديگر با توجه به پيشرفتهاي فني و تکنولوژي حاصل از طرحهاي استاندارد و برنامه ريزيهاي دقيق بمنظور تأمين سرمايه اوليه مورد نياز مطمئن و به هنگام احداث چند واحد در يک سايت براي صرفه جوئيهاي ناشي از مقياس مربوط به تأسيسات و تسهيلات مشترک مورد نياز در هر نيروگاه، همچنان مزيت نيروگاههاي اتمي از ديدگاه اقتصادي نسبت به نيروگاههاي با سوخت فسيلي در اغلب کشورها حفظ شده است. ساير ديدگاههاي اقتصادي در مورد آينده انرژي هسته اي حاکي از آن است که براساس تحليل سطح تقاضا و منابع عرضه انرژي در جهان، توجه به توسعه تکنولوژيهاي موجود و حقايقي نظير روند تهي شدن منابع فسيلي در دهه هاي آينده، مزيتهاي زيست محيطي انرژي اتمي و همچنين استناد به آمار و عملکرد اقتصادي و ضريب بالاي ايمني نيروگاههاي هسته اي، مضرات کمتر چرخه سوخت هسته اي نسبت به ساير گزينه هاي سوخت و پيشرفتهاي حاصله در زمينه نيروگاههاي زاينده و مهار انرژي گداخت هسته اي در طول نيم قرن آينده، بدون ترديد انرژي هسته اي يکي از حاملهاي قابل دسترس و مطمئن انرژي جهان در هزاره سوم ميلادي به شمار مي رود. در اين راستا شوراي جهاني انرژي تا سال 2020 ميلادي ميزان افزايش عرضه انرژي هسته اي را نسبت به سطح فعلي حدود 2 برابر پيش بيني مي نمايد. با توجه به شرايط موجود چنانچه از لحاظ اقتصادي هزينه هاي فرصتي فروش نفت و گاز را با قيمتهاي متعارف بين المللي در محاسبات هزينه توليد(قيمت تمام شده) براي هر کيلووات برق توليدي منظور نمائيم و همچنين تورم و افزايش احتمالي قيمتهاي اين حاملها(بويژه طي مدت اخير) را براساس روند تدريجي به اتمام رسيدن منابع ذخاير نفت و گاز جهاني مدنظر قرار دهيم، يقينا در بين گزينه هاي انرژي موجود در جمهوري اسلامي ايران، استفاده از حامل انرژي هسته اي نزديکترين فاصله ممکن را با قيمت تمام شده برق در نيروگاههاي فسيلي خواهد داشت.
5-2- ديدگاه زيست محيطي استفاده از برق هسته اي افزايش روند روزافزون مصرف سوختهاي فسيلي طي دو دهه اخير و ايجاد انواع آلاينده هاي خطرناک و سمي و انتشار آن در محيط زيست انسان، نگرانيهاي جدي و مهمي براي بشر در حال و آينده به دنبال دارد. بديهي است که اين روند به دليل اثرات مخرب و مرگبار آن در آينده تداوم چنداني نخواهد داشت. از اين رو به جهت افزايش خطرات و نگرانيها در مورد اثرات مخرب انتشار گازهاي گلخانه اي ناشي از کاربرد انرژيهاي فسيلي، واضح است که از کاربرد انرژي هسته اي بهعنوان يکي از رهيافتهاي زيست محيطي براي مقابله با افزايش دماي کره زمين و کاهش آلودگي محيط زيست ياد مي شود. همچنان که آمار نشان مي دهد، در حال حاضر نيروگاههاي هسته اي جهان با ظرفيت نصب شده فعلي توانسته اند سالانه از انتشار8 درصد از گازهاي دي اکسيد کربن در فضا جلوگيري کنند که در اين راستا تقريبا مشابه نقش نيروگاه هاي آبي عمل کرده اند. چنانچه ظرفيتهاي در دست بهره برداري فعلي توليد برق نيروگاههاي هسته اي، از طريق نيروگاههاي با سوخت ذغال سنگ تأمين مي شد، سالانه بالغ بر 1800 ميليون تن دي اکسيد کربن، چندين ميليون تن گازهاي خطرناک دي اکسيد گوگرد و نيتروژن، حدود 70 ميليون تن خاکستر و معادل 90 هزار تن فلزات سنگين در فضا و محيط زيست انسان منتشر مي شد که مضرات آن غيرقابل انکار است. لذا در صورت رفع موانع و مسايل سياسي مربوط به گسترش انرژي هسته اي در جهان به ويژه در کشورهاي در حال توسعه و جهان سوم، اين انرژي در دهه هاي آينده نقش مهمي در کاهش آلودگي و انتشار گازهاي گلخانه اي ايفا خواهد نمود. درحالي که آلودگيهاي ناشي از نيروگاههاي فسيلي سبب وقوع حوادث و مشکلات بسيار زياد بر محيط زيست و انسانها مي شود، سوخت هسته اي گازهاي سمي و مضر توليد نمي کند و مشکل زباله هاي اتمي نيز تا حد قابل قبولي رفع شده است، چرا که در مورد مسايل پسمانداري با توجه به کم بودن حجم زباله هاي هسته اي و پيشرفتهاي علوم هسته اي به دست آمده در اين زمينه در دفن نهايي اين زباله ها در حفره هاي عميق زيرزميني با توجه به حفاظت و استتار ايمني کامل، مشکلات موجود تا حدود زيادي از نظر فني حل شده است و طبيعتا در مورد کشور ما نيز تا زمان لازم براي دفع نهايي پسمانهاي هسته اي، مسائل اجتماعي باقيمانده از نظر تکنولوژيکي کاملا مرتفع خواهد شد.
از سوي ديگر به نظر مي رسد که بيشترين اعتراضات و مخالفتها در زمينه استفاده از انرژي اتمي بخاطر وقوع حوادث و انفجارات در برخي از نيروگاههاي هسته اي نظير حادثه نيروگاه چرنوبيل مي باشد، اين در حالي است که براساس مطالعات به عمل آمده احتمال وقوع حوادثي که منجر به مرگ عده اي زياد بشود نظير تصادف هوايي، شکسته شدن سدها، انفجارات زلزله، طوفان، سقوط سنگهاي آسماني و غيره، بسيار بيشتر از وقايعي است که نيروگاههاي اتمي مي توانند باعث گردند. به هر حال در مورد مزاياي نيروگاههاي هسته اي در مقايسه با نيروگاههاي فسيلي صرفنظر از مسايل اقتصادي علاوه بر اندک بودن زباله هاي آن مي توان به تميزتر بودن نيروگاههاي هسته اي و عدم آلايندگي محيط زيست به آلاينده هاي خطرناکي نظير SO2,NO2,CO,CO2 ، پيشرفت تکنولوژي و استفاده هرچه بيشتر از اين علم جديد، افزايش کارايي و کاربرد تکنولوژي هسته اي در ساير زمينه هاي صلح آميز در کنار نيروگاههاي هسته اي اشاره نمود. در مجموع ارزيابيهاي اقتصادي و مطالعات به عمل آمده در مورد مقايسه هزينه توليد(قيمت تمام شده) برق در نيروگاههاي رايج فسيلي کشور و نيروگاه اتمي نشان مي دهد که قيمت اين دو نوع منبع انرژي صرفنظر از هزينه هاي اجتماعي، تقريبا نزديک به هم و قابل رقابت با يکديگر هستند. چنانچه قيمت مصرف انرژيهاي فسيلي براي نيروگاههاي کشور برمبناي قيمتهاي متعارف بين المللي منظور شوند و همچنين در شرايطي که نرخ تسعير هر دلار در کشور 8000 ريال تعيين گردد، هزينه توليد(قيمت تمام شده) هر کيلووات ساعت برق در نيروگاههاي فسيلي و اتمي بشرح زير مي باشد.
مقايسه هزينه هاي اجتماعي توليد برق در نيروگاههاي فسيلي و اتمي بر اساس مطالعات به عمل آمده توسط وزارت نيرو در سال 1378 در خصوص تعيين هزينه هاي اجتماعي آلاينده هاي زيست محيطي مصرف سوختهاي فسيلي در چند نيروگاه فسيلي مورد نظر در کشور، نتايج به دست آمده به شرح ذيل مي باشد:
همچنين در تازه ترين مطالعه اي که براي تعيين هزينه هاي اجتماعي نيروگاههاي هسته اي در 5 کشور اروپايي بلژيک، آلمان، فرانسه، هلند و انگلستان صورت گرفته است، ميزان هزينه هاي اجتماعي ناشي از نيروگاههاي هسته اي در مقايسه با نيروگاههاي فسيلي بسيار پائين است. در اين مطالعه هزينه هاي خارجي هر کيلووات ساعت برق توليدي در نيروگاههاي هسته اي در حدود39/0 سنت ( معادل 2/31 ريال) برآورده شده است. بنابراين در صورتيکه هزينه هاي اجتماعي توليد برق را در ارزيابي هاي اقتصادي نيروگاههاي فسيلي و هسته اي منظور نمائيم قطعا قيمت تمام شده هر کيلووات ساعت برق در نيروگاه هسته اي نسبت به فسيلي به طور قابل ملاحظه اي کاهش خواهد يافت. به هر حال نيروگاههاي فسيلي و هسته اي هر کدام داراي مزايا و معايب خاص خود مي باشند و ايجاد هر يک متناسب با مقتضيات زماني و مکاني هر کشور خواهد بود و انتخاب نهايي و تصميم گيري در اين زمينه بايد با توجه به فاکتورهايي از قبيل عوامل تکنولوژيکي، ارزشي، سياسي، اقتصادي و زيست محيطي توأما اتخاذ گردد. قدر مسلم ايجاد تنوع در سيستم عرضه و تأمين انرژي از استراتژيهاي بسيار مهم در زمينه توسعه سيستم پايدار انرژي در هر کشور محسوب مي شود. در اين راستا با توجه به بررسي هاي صورت گرفته، شوراي انرژي اتمي کشور مصمم به ايجاد نيروگاههاي اتمي به ظرفيت کل 6000 مگاوات در سيستم عرضه انرژي کشور تا سال 1400 هجري شمسي مي باشد.
6- کاربردهاي علوم و تکنولوژي هسته اي علي رغم پيشرفت همه جانبه علوم و فنون هسته اي در طول نيم قرن گذشته، هنوز اين تکنولوژي در اذهان عمومي ناشناخته مانده است. وقتي صحبت از انرژي اتمي به ميان مي آيد، اغلب مردم ابر قارچ مانند حاصل از انفجارات اتمي و يا راکتورهاي اتمي براي توليد برق را در ذهن خود مجسم مي کنند و کمتر کسي را ميتوان يافت که بداند چگونه جنبه هاي ديگري از علوم هسته اي در طول نيم قرن گذشته زندگي روزمره او را دچار تحول نموده است. اما حقيقت در اين است که در طول اين مدت در نتيجه تلاش پيگير پژوهشگران و مهندسين هسته اي، اين تکنولوژي نقش مهمي را در ارتقاء سطح زندگي مردم، رشد صنعت و کشاورزي و ارائه خدمات پزشکي ايفا نموده است. موارد زير از مهمترين استفاده هاي صلح آميز از علوم و تکنولوژي هسته اي مي باشند: 1- استفاده از انرژي حاصل از فرآيند شکافت هسته اورانيوم يا پلوتونيوم در راکتورهاي اتمي جهت توليد برق و يا شيرين کردن آب درياها. 2-استفاده از راديوايزوتوپها در پزشکي، صنعت و کشاورزي 3- استفاده از پرتوهاي ناشي از فرآيندهاي هسته اي در پزشکي، صنعت و کشاورزي. يکسان بودن عدد اتمي در ايزوتوپها باعث گشته که خواص شيميايي و بعضا فيزيکي يکسان داشته باشند اما در عين حال خواص هسته اي متفاوتي دارند. در حالي که بطور طبيعي اکثر ايزوتوپهاي موجود از پايداري نسبي برخوردار هستند، اما ايزوتوپهاي ساخته دست انسان، عمدتا غيرپايدار مي باشند. پايداري يک ايزوتوپ توسط نيمه عمر آن تعيين مي گردد و نيمه عمر زماني است که مقدار يک ايزوتوپ از طريق تلاشي به نصف مي رسد.
نظرات شما عزیزان: چهار شنبه 19 بهمن 1390برچسب:آشنا یی با انرژی هسته ای, :: 13:32 :: نويسنده : MOHSEN
![]() ![]() |